
1

SAS® Macros for Data De-identification

Elliot Inman & David Maydew, SAS Institute Inc.

2015

ABSTRACT

By sharing data, researchers maximize the potential to understand the data and uncover meaningful
insights. Sharing data can also help to ensure the reproducibility of scientific findings and reduce the
chances of serious technical errors in an analysis. While it was once rare for researchers to share source
data, even during peer review of academic research, data sharing is increasingly becoming the norm and,
in some cases, mandated by law.

However, not all data can or should be shared. For example, some data include personally-identifiable
information about unique individuals who provided information with an expectation of privacy. This is true
for health care data that include confidential information about unique individuals such as a diagnoses,
treatments, and other sensitive data. The original data may include names, addresses, and other details
that would link study data to real, specific individuals. Those data are and should be protected and
private. On the other hand, enabling researchers with a sincere scientific interest in those data access to
the core elements of the data – without revealing any personally-identifiable information about unique
patients – has the potential to advance our understanding of diseases and treatments.

To facilitate the sharing of meaningful, detailed data while protecting the privacy of study participants,
researchers must implement de-identification strategies that respect participant privacy and data integrity.
This paper presents a set of SAS® macros that facilitate the de-identification of data. The code
demonstrates data anonymization, unique ID masking, targeted deletion of records and variables, and
techniques to ensure cell size minimums for reporting. These macros operate across an entire library of
data sets simultaneously, searching all data for issues of concern and systematically applying changes
across all data sets to retain the relational integrity of the data. The code also implements a variety of
control measures that allow the user to verify that the code ran as expected. Macro code is presented in
full with comments that describe all of the functionality to allow users to deploy and modify the code to
meet their specific needs.

INTRODUCTION

The purpose of this code is to facilitate the de-identification of data sets by simplifying several standard
processes for doing so, including:

 Identifying and deleting specific variables;

 Identifying and deleting specific cases;

 Implementing an anonymous identifier; and

 Identifying cases that, together, do not meet minimum cell sizes for reporting.

The macros here perform these operations on one or more SAS data sets in a folder. For example, to
delete a variable from a SAS data set, the user must specify a particular data set and the variable. That
operation is performed on a single data set. Other operations are performed on all data sets in the folder.
For example, the implementation of a unique identifier is executed across multiple data sets to maintain
the referential links between the files such that “John Smith” is “1” in every file, “Mary Jones” is “2” in
every file, and so on.

2

For some macros, separate data sets are created to save records and other data associated with the
macro. For most macros, the results of the process are also reflected in a brief listing output showing the
effects of the macro. If the macro ran, but actually took no action on any data set, no listing output or
data set will be produced. For example, if the variable named to be removed is not in the data set, no
listing is output. As always, users should check the log files of all programs to ensure code executed
without warning or error.

The macros here are designed to simplify the process of de-identification without over-simplifying the
process. Execution of some macros could be further automated, although the code to do so would be
more complex and running such operations in a purely automated fashion might create other risks. As an
example, users could modify this code so that all cases that violate minimal cell size conditions are
automatically eliminated from all data sets. Would such deletions distort the meaning of the released
data, impose a sample bias, or eliminate rare cases that are important for scientific study? Users are
encouraged to give careful consideration to the application of these macros in fulfilling the goal of sharing
meaningful data that protects the true identities of human subjects.

REQUIRED SKILLSET

This code assumes the user is familiar with SAS® BASE Language and SAS® MACRO Language and has
access to this software to run the code. No statistical expertise is required. This code assumes the user
has access to the original data sets and can create a temporary directory and copies of the target data
sets so that destructive edits can be made.

LEGAL DISCLAIMER

The sample macro code included in this white paper may be used to support basic de-identification
processes through the use of SAS® MACRO Language code. These macros are provided as-is and SAS
has no obligation to provide continued support for their use. Use of any part or all of this code is not
guaranteed to fulfill any legal or other requirements of any specific data governance standard or law
governing de-identification of data. Users assume all responsibility for ensuring that the final publication of
any de-identified data meets all legal requirements for release of such data. Users assume all legal and
ethical responsibility for determining the appropriateness of releasing data analyzed and/or modified
using this code.

3

OVERVIEW OF THE MACROS

Table 1 provides a summary of the macros, including a brief description of the functionality, scope,
output, and the effects on the data sets processed. After the table, each macro is presented in its
entirety, beginning with some additional startup code that should be executed at the start of the process.
The startup code contains an initial proc datasets call to read all of the files in the folder into temporary
memory and a later proc datasets call to write all of the files in memory permanently to the folder. Note
that macros that are run against all files in the folder will also execute against any temporary files
generated previously by other macros. In some cases, results reported will include analysis of those files
as well; however, those instances will be obvious and will not affect the functioning of the individual
macros.

Note that users should always create a second copy of all data to be de-identified to implement these
macros. While not all macros are destructive, some are and edits to the files cannot be undone. To
execute the code, the user must specify a library name for the location of the copies of the files to be de-
identified.

MACRO Brief Description Scope Destructive
Deletion

Check / Output

Find_Variable Identifies all files
with a critical

variable.

All files in
directory, one

variable.

No. Printed list of files
in which the
variable was

found.

Drop_Variable Deletes one or more
variables from one

specific file.

One named file,
multiple

variables.

Yes. Deletes
that specific
variable(s).

Printed list of
deleted variables.

Anonymous_ID_to_all Replaces a known
unique ID with a

random ID across
multiple files,
maintaining

referential integrity.

All files in
directory, one
variable (the
unique ID).

Yes.
Replaces

values of the
unique ID
with new,
randomly
generated

IDs.

Output SAS data
set with previous

and new ID
values.

Record_Removal Removes all cases
based on a specific

variable with a
particular value.

All files in
directory,

record-level
edits only.

Yes. Deletes
the record(s)
that fulfill the

variable /
value criteria.

Output SAS data
set with removed

records and
printed list.

Find_Min_Cell_Size Identifies records
that, based on

multiple variables,
constitute less than

X count of records in
a file.

All files in
directory, no

edits.

No. Printed list of
cases that match

search criteria and
unique IDs for
those cases.

Table 1. MACRO Definitions and Functionality

4

STARTUP CODE

/* Declare the Library where the files to be de-identified are located.

DO NOT RUN these MACROs against the only version of the target data sets. Make a copy of those

data sets and store them in a folder with only those data sets (e.g., C:\TO_BE_DEIDED) and

declare that library here. These SAS data sets are read into work and destructive edits applied

to the data.*/

libname folder "C:\DEID";

* Reads all data sets in the library into work for editing;

proc datasets library=folder noprint;

 copy out=work;

 run;

quit;

/* This final proc datasets has been commented out here. It should be uncommented and

run at completion of running one or more of the macros presented here.

Writes all data sets in the library into the permanent folder

proc datasets library=work noprint;

 copy out=folder;

 run;

quit;

*/

5

FIND_VARIABLE

/* FIND_VARIABLE: Identify All Files with a Critical Variable */

/* FIND_VARIABLE finds that variable name or that keyword in a variable label and identifies the

data sets in the selected directory that include the variable or derivatives. This MACRO will

run only one variable at a time, for example %FIND_VARIABLE(SSN) where "SSN" is the variable you

are seeking.

*/

%macro FIND_VARIABLE(var);

 proc contents data=_all_ out=Variable_Census noprint;

 run;

 data Variable_Census_Sample;

 set Variable_Census;

 SAS_Data_Set=MEMNAME;

 Variable=NAME;

 where find(upcase(NAME), upcase("&var")) or find(upcase(Label),

 upcase("&var"));

 keep SAS_Data_Set Variable Label;

 run;

 proc print data=Variable_Census_Sample;

 id SAS_Data_Set Variable;

 var Label;

 title "Files with the variable or title including &var";

 run;

 proc datasets noprint;

 delete Variable_Census Variable_Census_Sample;

 title " ";

 *Reset title to nothing;

 run;

 quit;

%mend FIND_VARIABLE;

/* Example Call:

%FIND_VARIABLE(USUBJID)

*/

6

DROP_VARIABLE

/* DROP_VARIABLE: Drop one or more variables from a data set

This macro will drop the variables specified from the data set.

Thus, DROP_VARIABLE(mydata, v1) would drop the variable v1 from the data set mydata.

DROP_VARIABLE(mydata, v1 v2 v3) would drop the variables v1, v2, and v3 from the data set mydata

Output includes a listing of the variables dropped in the analysis.

*/

%macro DROP_VARIABLE(dsn, varlist);

 *Data set name and list of variables to be dropped (separated by spaces);

 proc contents data=&dsn out=before_&dsn noprint;

 run;

 data &dsn;

 set &dsn;

 drop &varlist;

 run;

 proc contents data=&dsn out=after_&dsn noprint;

 run;

 data before_after;

 /* Append the two data sets */

 set before_&dsn after_&dsn;

 run;

 proc freq data=before_after noprint;

 tables NAME / out=Before_and_After_Counts;

 run;

 proc print data=before_and_after_counts;

 id Name;

 var Count;

 title "Variables Dropped during This Process";

 where COUNT=1;

 run;

 proc datasets noprint;

 delete before_&dsn after_&dsn before_after before_and_after_Counts;

 title " ";

 run;

 quit;

%mend DROP_VARIABLE;

/* Example Call:

%DROP_VARIABLE(labs, sex age)

7

ANONYMOUS_ID_TO_ALL

/* ANONYMOUS_ID_TO_ALL: Finds the selected Identification Variable, generates a new

random ID, and applies that ID to all files maintaining the referential integrity of

those links.

WARNING: Each time this is executed, a new masterlookup table is generated,

overwriting any previous assignment.

Requires a known unique ID used across records in multiple files. Requires a single

master table that includes all of the possible IDs used across the data sets.

Saves a SAS data set called "masterlookup" which includes the original ID and the new ID.

Masterlookup is the only retained record of the original and generated ID. It should be

saved by the user in a separate folder from this workspace to record this match should

it become necessary later to verify a match.

Save the master ID table "masterlookup" as a separate file for future reference.

In the MACRO call below:

masterdataset is the master file that includes all instances of the ID such as an

enrollment file or subject demographics file

mastervariable is the master ID variable that is used to identify unique cases

across all files in the directory.

*/

%macro ANONYMOUS_ID_TO_ALL(masterdataset, mastervariable);

 /*

 WARNING: A new lookup is created each time this is executed, invalidating

 any previous lookup generated.

 The proc datasets immediately below this deletes ANY previous masterlookup data set.

 */

 proc datasets noprint;

 delete masterlookup;

 run;

 quit;

 data &masterdataset;

 set &masterdataset;

 random=ranuni(1);

 ANON_ID=.;

 run;

 proc sort data=&masterdataset;

 by random;

 run;

 data &masterdataset;

 retain ANON_ID;

 set &masterdataset;

 ANON_ID=_N_;

 drop random;

 run;

8

 proc contents data=_ALL_ out=all_datasets(keep=memname) noprint;

 run;

 proc sort data=all_datasets nodupkey;

 by memname;

 run;

 data masterlookup;

 set &masterdataset;

 keep ANON_ID &mastervariable;

 run;

 proc sort data=masterlookup;

 by &mastervariable;

 run;

 data all_datasets;

 set all_datasets;

 row=_N_;

 call symput('numrows', _N_);

 run;

 %do i=1 %to &numrows;

 data _NULL_;

 set all_datasets;

 where &i=row;

 call symput('dsn', memname);

 run;

 proc sort data=&dsn;

 by &mastervariable;

 run;

 data &dsn;

 retain ANON_ID;

 merge &dsn (in=a) masterlookup;

 by &mastervariable;

 if a;

 run;

 data &dsn;

 set &dsn;

 drop &mastervariable;

 run;

 proc sort data=&dsn;

 by ANON_ID;

 run;

 %end;

 proc sort data=masterlookup;

 by ANON_ID;

 run;

9

 proc datasets noprint;

 delete all_datasets;

 run;

 quit;

%mend ANONYMOUS_ID_TO_ALL;

/* Example Call:

%ANONYMOUS_ID_TO_ALL(dm,ID)

*/

10

RECORD_REMOVAL

/* RECORD_REMOVAL: Removes one or more records from ALL data sets in the directory

using a specific identifier.

If the variable chosen is a unique identifier, a unique case can be removed from

all files in the directory. If the variable chosen includes a parameter for

which there are multiple cases, multiple records are deleted. For example,

RECORD_REMOVAL(ID, 3) removes any record for which the variable "ID" is equal to

three (3). In a master patient index or enrollment file, there may be only one

instance of that record. In a file including all lab work performed, there may

be multiple records associated with patient #3. For that file, all records for

patient #3 will be deleted.

*/

%macro RECORD_REMOVAL(variable, param);

 proc contents data=_ALL_ out=all_datasets(keep=memname) noprint;

 run;

 proc sort data=all_datasets nodupkey;

 by memname;

 run;

 data all_datasets;

 set all_datasets;

 row=_N_;

 call symput('numrows', _N_);

 run;

 %do i=1 %to &numrows;

 data _NULL_;

 set all_datasets;

 where &i=row;

 call symput('dsn', memname);

 run;

 data transport;

 retain dataset;

 set &dsn;

 length SAS_Data_Set $32;

 length Reason $32;

 SAS_Data_Set="&dsn";

 Reason="'&variable' = ¶m";

 where &variable=¶m;

 keep SAS_Data_Set reason;

 run;

 proc append base=deleted_records data=transport force;

 run;

 proc datasets noprint;

 delete transport;

 run;

 quit;

11

 data &dsn;

 set &dsn;

 if &variable=¶m then delete;

 run;

 %end;

 proc datasets noprint;

 delete all_datasets;

 run;

 quit;

 proc sort data=deleted_records;

 by reason;

 run;

 proc freq data=deleted_records;

 tables SAS_Data_Set / nocum nopercent;

 by reason;

 title "Number of Records Removed from Each SAS Data Set by Reason Removed";

 run;

%mend RECORD_REMOVAL;

/* Example Call:

%RECORD_REMOVAL(anon_id, 12)

*/

12

FIND_MIN_CELL_SIZE

/* FIND_MIN_CELL_SIZE: Finds cases that, based on up to 10 variables, represent less than

a certain minimum cell size.

Multiple parameters can be set by the user:

minimumsize: the minimum cell size

unique_ID: variable name already in the data set that can uniquely identify specific records

numofvars : the number of variables to be used to identify a grouping (up to 10)

Variables : v1 to v10

For example, if a user wants to find all combinations of two variables (Location, Diagnosis) that

appear fewer than 5 times in the data set and the data include SSNs, the code to execute the

macro might look like:

%FIND_MIN_CELL_SIZE(5, SSN, 2, Location, Diagnosis)

*/

%macro FIND_MIN_CELL_SIZE(minimumsize, unique_id, numofvars, v1, v2, v3, v4,

 v5, v6, v7, v8, v9, v10);

 %let allvars = &v1;

 %do i=2 %to &numofvars;

 %let allvars = &allvars., &&v&i;

 %end;

 proc contents data=_ALL_ out=all_datasets(keep=memname) noprint;

 run;

 proc sort data=all_datasets nodupkey;

 by memname;

 run;

 data all_datasets;

 set all_datasets;

 row=_N_;

 call symput('numrows', _N_);

 run;

 %do i=1 %to &numrows;

 data _NULL_;

 set all_datasets;

 where &i=row;

 call symput('dsn', trim(memname));

 run;

 data &dsn._modified;

 set &dsn;

 Variable_Combination=catx(',', &allvars);

 run;

 /* Identify combinations of variable values less than the minimum count */

 proc freq data=&dsn._modified noprint;

 table Variable_Combination / out=Frequencies_of_Combination missing;

 run;

13

 data Frequencies_of_Combination;

 set Frequencies_of_Combination;

 length SAS_Data_Set $32;

 Count_in_File=Count;

 Percent_in_File=Percent;

 Below_Count="Y";

 SAS_Data_Set="&dsn";

 where count < &minimumsize;

 run;

 /* Get unique_ids for cases matching the problematic variable combination */

 proc sort data=&dsn._modified;

 by Variable_Combination;

 run;

 proc sort data=Frequencies_of_Combination;

 by Variable_Combination;

 run;

 data IDs;

 merge &dsn._modified Frequencies_of_Combination;

 by Variable_Combination;

 keep SAS_Data_Set Variable_Combination &unique_id Below_Count;

 run;

 data IDs;

 set IDs;

 where Below_Count="Y";

 run;

 proc append base=Below_Minimum_Count data=Frequencies_of_Combination force;

 run;

 proc append base=Below_Count_IDs data=IDs force;

 run;

 proc datasets noprint;

 delete &dsn._modified Frequencies_of_Combination IDs;

 run;

 quit;

 %end;

 proc print data=Below_Minimum_Count;

 id Variable_Combination;

 var SAS_Data_Set Count_in_File Percent_in_File;

 title "Combinations of &allvars with Fewer than &minimumsize Observations";

 run;

 proc print data=Below_Count_IDs;

 id Variable_Combination;

 var SAS_Data_Set &unique_id;

 title "&unique_id for Cases Below Minimum Cell Count Criteria";

 run;

 proc datasets noprint;

14

 delete Below_Minimum_Count all_datasets;

 title " ";

 run;

 quit;

%mend FIND_MIN_CELL_SIZE;

/* Example Call:

%FIND_MIN_CELL_SIZE(5, ANON_ID, 2, Race, Sex)

*/

15

NEXT STEPS

These macros are intended to provide a quick start for programmers interested in de-identifying data.
Implementation of these macros requires basic SAS programming skills, but this code has been written to
minimize the challenge. In the interest of simplicity, we have repeated some code in multiple individual
macros to make it easier to run each as standalone code. We have used a simple proc print for
summarizing the execution of the macros, leaving that output pointed to the default location instead of, for
example, creating an external running log of all macros executed.

Additional code could be written to add functionality such as the ability to shift dates or to automate the
replacement of data that, due to combinations of critical variables, fail minimum cell size conditions.
Other code could be written to provide end-users a greater range of options such as default deletion of
any reference linking the original identifiers to anonymized identifiers. As with all SAS code, these
macros could be executed via a user-friendly html-style interface that requires no programming skill or
even a more automated process that executes macros in a batch script.

As these macros demonstrate, certain aspects of the de-identification process are mechanical. But de-
identification is not a purely mechanical process. Given the legal and indeed moral aspects of
commitments to maintain the privacy of individual human participants, there will always be a need for a
careful human review of de-identification algorithms, processes, and methods and resulting research data
to be shared.

While the sharing of research data was once rare, the process is becoming far more common and, in
some cases, mandated by changes in the law and policy. From government agencies to academic
journals, sharing of data is quickly becoming the norm. Sharing of data undoubtedly helps to ensure that
research findings are sound. At the same time, sharing data can help to extend the value of data
collected to a broader community of researchers, rapidly increasing the intellectual energy available to
drive that research. It is our hope that these macros will help to facilitate the secure sharing of such data.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.

Elliot Inman, Ph.D.
Manager, Software Development
SAS Solutions OnDemand / Health Life Sciences R&D
801 SAS Campus Drive
Cary, NC 27513
Elliot.Inman@sas.com
www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:Elliot.Inman@sas.com

